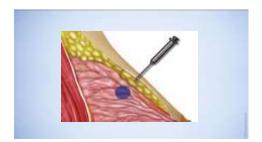


'DxS is a Personalised Medicine Company that meets the needs of the pharmaceutical industry for biomarkers and companion diagnostics to support the development and then sales of cancer therapies.'

The Holy Trinity of Successful Molecular Diagnostic Companies

Content

Global Distribution


Platform

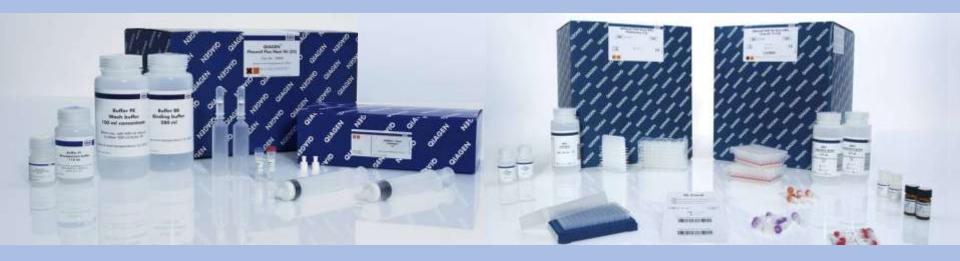
QIAGEN Sample & Assay Technologies:

Elucidating information from biological samples

Complex sample

Pure Analyte

Information



QIAGEN products:

Sample & Assay Technologies on Automated Platforms

Sample Technologies

Assay Technologies

Fully Automated Platforms

QIAsymphony = Our Medium-throughput System...

...can process up to 200 samples per day – very broad test menu available

QIAGEN's Global Footprint

QIAGEN at a Glance: A focused Market Leader

Revenues

- \$1'010 million
- Industry-leading growth
- 17% from products under 3 years old
- Molecular Sample & Assay Technologies
- Majority of sales in Molecular Diagnostics

Infrastructure and Innovation

■ Customers >400,000

■ Employees 3'500

R&D \$120 million

Presence Global

(1) All numbers projected

The Age of Molecular Information

We have entered the age of molecular information.

To understand the molecular basis of life, the global research community invests more than **US\$ 120.000.000.000** a year.

Molecular information will improve our health, our lives, and our environment

- What makes humans different? And what is unique?
- Who will develop disease? And how do we prevent it?
- What is the difference between health and illness? And how do we diagnose it?
- What causes a cancer to develop? And how can we stop it?
- How can we feed the planet?
 And how do we make the world a safer place?
- Why don't medicines always work? And how can we develop better therapies?

We are just at the beginning: the molecular revolution has barely started!

QIAGEN's 4 "P" Framework in MDx

	LABORATORY BASED TESTING			POINT OF NEED
	Prevention Asymptomatic patients Goal: Early detection	Profiling Symptomatic patients Goal: Confirm	Personalized Healthcare Pre-diagnosed patients Goal: Guide therapy	Rapid turnaround needed No laboratory reachable Goal: fast result, on spot
Assay Technologies	Narrow portfolio High volume/<\$20/assay	Broad portfolio High value, low volume	Growing portfolio High value, low volume	Emerging segment Instrument <\$2k, Assays: \$3-30
	Examples	Examples	Examples KRAS EGFR BRAF Pl3K Pathogen Genotyping	Examples careHPV HAI Influenza
Instruments	High throughput Continuous load	Random access Continuous load	Random access Continuous load	Portable test systems Rapid turn around < 2hrs
	QIAensemble	QIAsymphony	QIAsymphony	TBA
Assay Design	Fast, typically isothermal amplification or no amp	PCR Pyrosequencing	PCR Pyrosequencing	Isothermal amplification

Focusing on Personalized Healthcare

	LABORATORY BASED TESTING			POINT OF NEED
	Prevention Asymptomatic patients Goal: Early detection	Profiling Symptomatic patients Goal: Confirm	Personalized Healthcare Pre-diagnosed patients Goal: Guide therapy	Rapid turnaround needed No laboratory reachable Goal: fast result, on spot
	Narrow portfolio High volume/<\$20/assay	Broad portfolio High value, low volume	Growing portfolio High value, low volume	Emerging segment Instrument <\$2k, Assays: \$3-30
Assay Technologies	Examples HPV Chlamydia/NG 5 additional assays in pipeline More to come	Examples CMV EBV HBV HIV HCV Influenza	Examples KRAS EGFR B-RAF PI3K Pathogen Genotyping	Examples careHPV HAI Influenza
Instruments	High throughput Continuous load	Random access Continuous load	Random access Continuous load	Portable test systems Rapid turn around < 2hrs
Assay Design	QIAensemble Fast, typically isothermal amplification or no amp	QIAsymphony PCR Pyrosequencing	QIAsymphony PCR Pyrosequencing	TBA Isothermal amplification

The problem: Drugs do not always work

Drug	Efficacy		
Anti-Depressants	62%	↑	
Asthma	60%	†#####	
Diabetes	57%	†††††††	
Arthritis	50%	†††††††	
Alzheimer	30%	†††††††	
Cancer	25%	↑	
		= Drug does not work	

Good drugs go to the wrong patients

Personalized Healthcare

The use of a companion diagnostic to predict in advance which patients are most likely to benefit from a particular therapy

Personalized Healthcare The 5 "P"s - Good All Round

Stakeholder	Benefit	
Pharma companies	Regulatory approval Competitive advantage Increase cost effectiveness of drug	
Physicians	Increased safety in treatment decisions Start directly with right treatment and Save valuable time	
Payers	Increase efficiency of therapies Save money in healthcare systems	
Patients	Best therapy available Avoid unnecessary side-effects	
Providers (Dx companies, labs)	New market opportunities	

But despite its obvious benefits this has been a challenging business environment

Personalized Medicine in 2011 Three Major Drivers

Political - Effectiveness to Cost Effectiveness

- WW acceptance: Money spent on healthcare is finite
- Increased emphasis on health technology assessment (HTA)
 Aim: Increase cost effectiveness of treatments
- Pharmaceutical companies are responding
 Trend: Development of companion diagnostics (CDx)
 to increase cost effectiveness of drugs

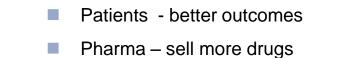
Scientific - Therapies to Targeted Therapies

- Advancement in understanding of disease processes lead to target drugs, more closely to specific molecular targets
- Increasing demand for diagnostic tools to identify patients with specific disease sub-types, likely to respond to the therapy
- Increased sequencing power uncovers more potential biomarkers

Regulatory - Passive to Active Regulation

- Regulatory Authorities realized benefits CDx can bring to patients
- Both EMEA and the FDA encouraging pharmaceutical companies to explore the use of CDx during drug development

How does the PHC market work?



Market is influenced by other stakeholders

Providers – spend less money

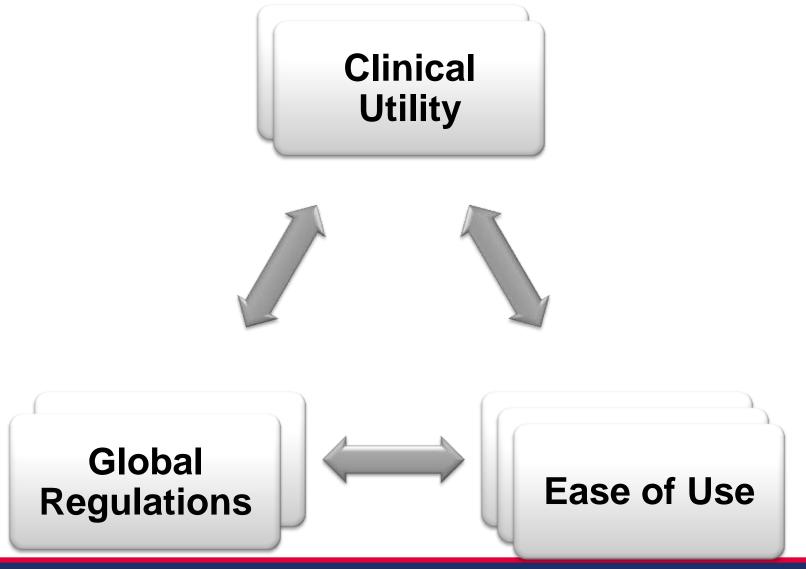
Diagnostic Tests ordered by Doctors

- Clinical Utility
- Benefit to Patients

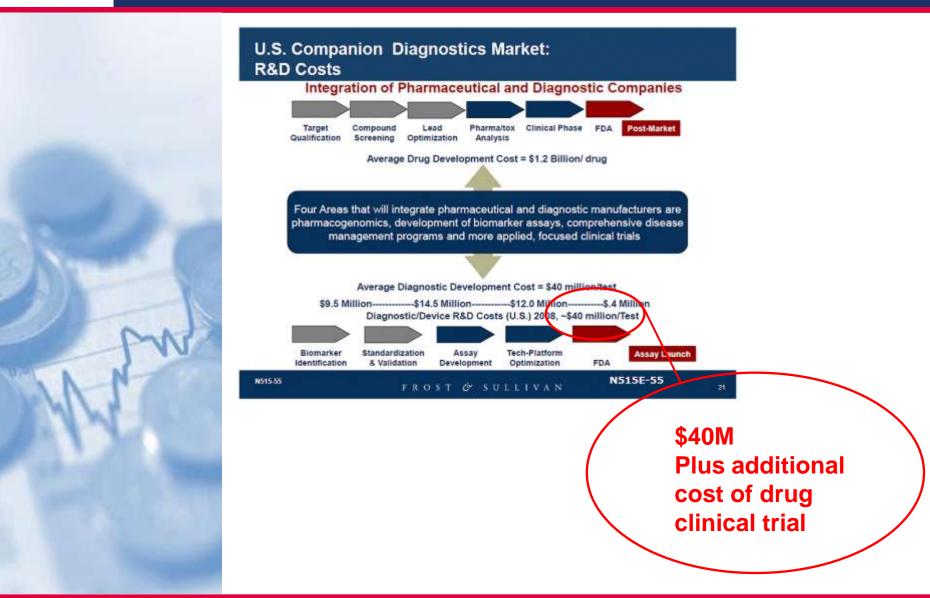
Diagnostic Tests are provided by Diagnostic Labs

- Major Reference Labs
- Smaller Hospital Labs
- Specialised Labs

Labs can also develop their own tests (LDTs)


Diagnostic Products are supplied by Diagnostic Companies

- Small number of global players with complete systems
- Larger number of companies offering partial solutions



4 Critical Success Factors for translation of biomarker to Companion Diagnostics

Cost of Diagnostic Product Development

Understanding the Market Segments Key to Commercial Success

Pharma wants to sell drugs

- Focus on meeting the needs of the Pharma industry
 - Custom develop companion diagnostic tests
 - Win regulatory approval
 - Distribute and sell products globally

Providers want to save money

- Focus efforts on meeting needs of national health services and pharmacy benefit managers
- Generate convincing pharmaco-economic data

Patients want better results

- Focus on reducing unnecessary drug usage or selecting best treatment
- Find way of selling benefits to patients and doctors
- Be prepared to invest in marketing

Drug/Diagnostic Partnerships are driving the field forward

- Share the cost of CDx development
- Clinical utility issue solved
- Drug success guarantees market
- Unique content encourages platform uptake
- Co-marketing with Pharma and..
- QIAGEN has infrastructure
- QIAGEN has platforms, flanking menu and Sample & Assay Technologies needed

Understanding the needs of Pharma – high speed and low risk

- Don't let the <u>development</u> of the diagnostic slow up drug development
- Don't let <u>regulatory</u> approval of the diagnostic slow up drug approval
- 3. Don't let the <u>availability</u> of the diagnostic limit uptake of the drug

The CDx roadmap - 3 stages in the life of a CDx

Tools for Biomarker Selection

Development and Regulatory
Expertise

Platform and product distribution and marketing

Identify Biomarkers

Develop Approved CDx

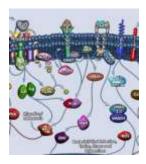
Sell CDx

Used by pharma on preclinical and clinical samples

Used by pharma on clinical trial patients

Used by diagnostic labs on samples of "real" patients

Drug development Phase I and II Drug development Phase II and III


Sell Drugs

Rx pathway

Stage I – Biomarker selection and CDx strategy

Identify Biomarkers

Drug development
Phase I and II

- •Which biomarkers correlate with drug response?
- •Is there a business case for moving forward with a CDx?
- •If we were to progress to a CDx what would the biomarkers be?

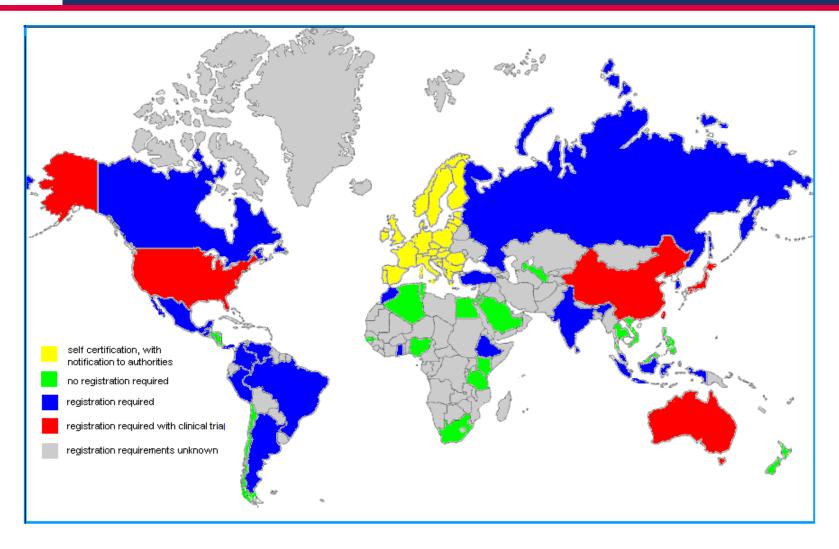
Drivers of PHC within the pharmaceutical industry

- Influence of the regulatory authorities
 - No approval without a CDx
- Increased cost-effectiveness
 - Makes reimbursement easier
- More competitive products
 - Doctors prefer drugs that work
- Increased chance of a successful pivotal trial
 - Use of a CDx may not always reduce cost but can increase likelihood of success
- Precedent
 - Several high profiles examples such as Amgen's Vectibix, Lilly's Erbitux and AstraZeneca's Iressa have shown the viability of the approach

Stage II Co-development and approval of Rx and CDx

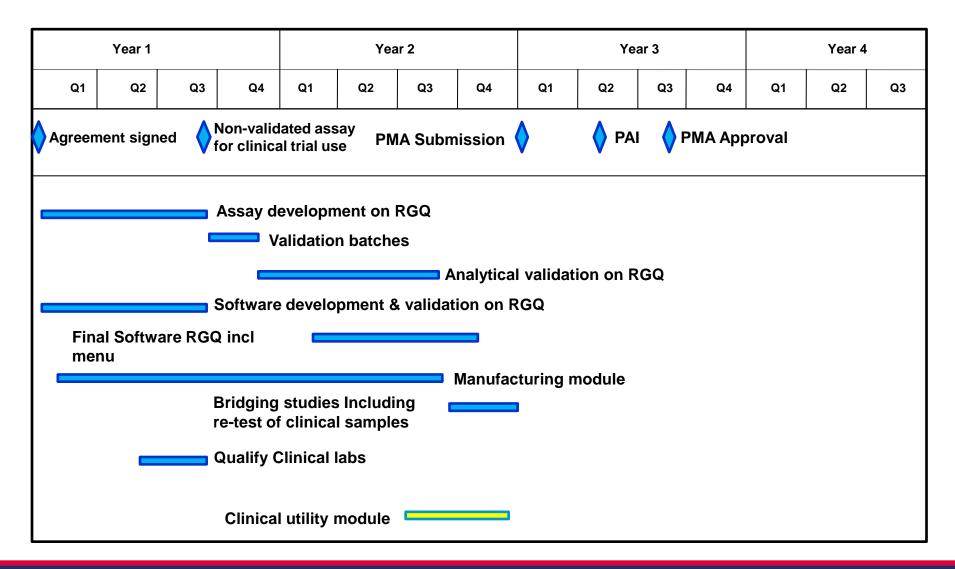
Develop Approved CDx

Used by pharma on clinical trial patients



Drug development
Phase II and III

- Activities primarily driven by the requirement s of the regulatory agencies
- •Target markets for the Rx set the regulatory requirements for the CDx
- •Ideally the final version of the diagnostic will be available for the start of the phlll trial but if not there are bridging and design strategies available
- •The choice of platform and technology at this stage will have a big impact on future commercial success



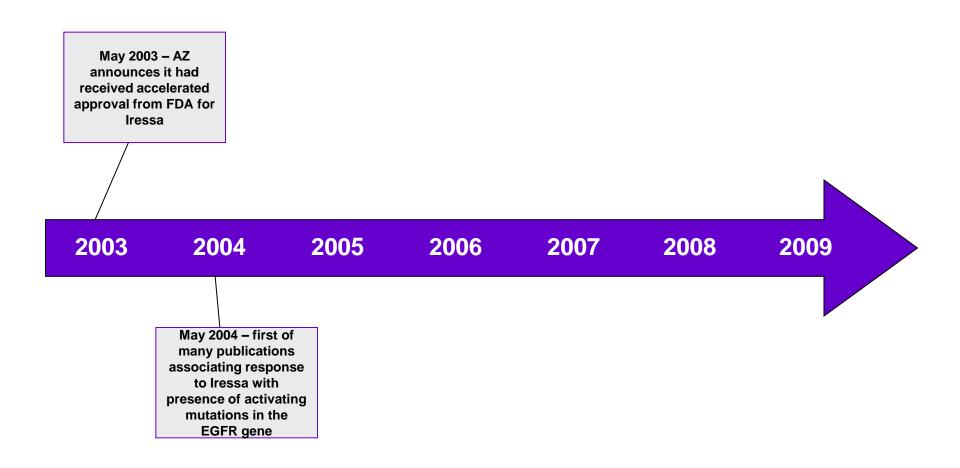
Global In vitro diagnostic regulatory systems

Companion Diagnostic – Generic Timescale

Stage III – Co-marketing

Sell CDx

Used by diagnostic labs on samples of "real" patients


Sell Drugs

- The CDx product must be readily adopted by the laboratories which will offer the test to the medical community
 - Reimbursement and Price
 - Regulatory status
 - Platform footprint
 - •IP
 - Workflow
- •The test must be seen to be valuable by the medical community
 - Clinical utility
 - Advocacy
 - Professional organisations

Iressa time-line

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 20, 2004

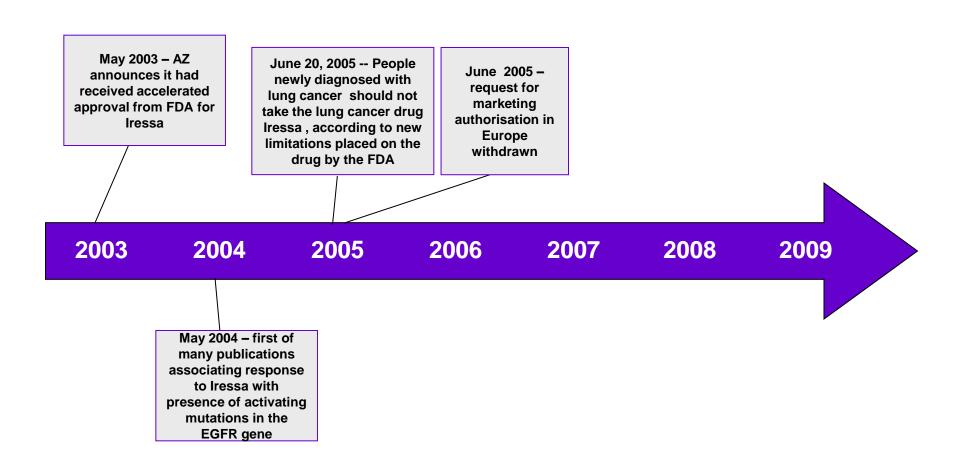
VOL. 350 NO. 21

Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib

Thomas J. Lynch, M.D., Daphne W. Bell, Ph.D., Raffaella Sordella, Ph.D., Sarada Gurubhagavatula, M.D., Ross A. Okimoto, B.S., Brian W. Brannigan, B.A., Patricia L. Harris, M.S., Sara M. Haserlat, B.A., Jeffrey G. Supko, Ph.D., Frank G. Haluska, M.D., Ph.D., David N. Louis, M.D., David C. Christiani, M.D., Jeff Settleman, Ph.D., and Daniel A. Haber, M.D., Ph.D.

Sciencexpress

Report


EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy

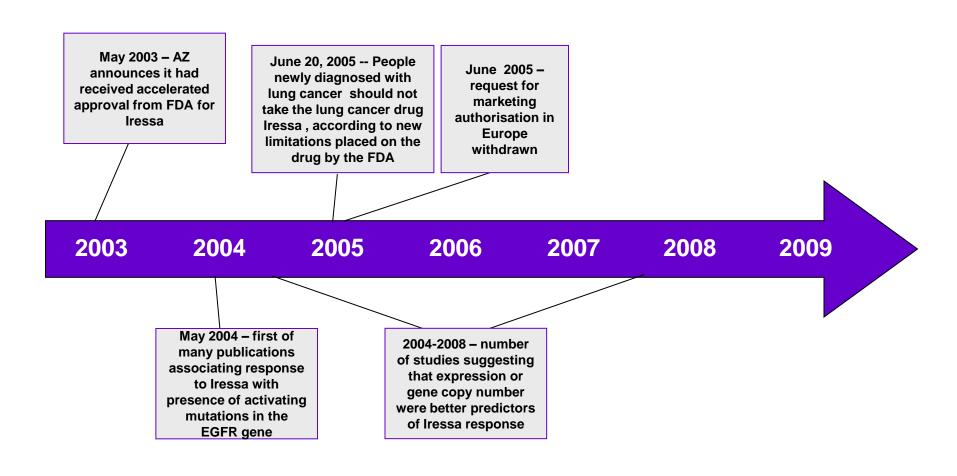
J. Guillermo Paez, ^{1,2*} Pasi A. Jänne, ^{1,2*} Jeffrey C. Lee, ^{1,3*} Sean Tracy, ¹ Heidi Greulich, ^{1,2} Stacey Gabriel, ⁴ Paula Herman, ¹ Frederic J. Kaye, ⁵ Neal Lindeman, ⁶ Titus J. Boggon, ^{1,3} Katsuhiko Naoki, ¹ Hidefumi Sasaki, ⁷ Yoshitaka Fujii, ⁷ Michael J. Eck, ^{1,3} William R. Sellers, ^{1,2,4†} Bruce E. Johnson, ^{1,2†} Matthew Meyerson ^{1,3,4†}

¹Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115 USA. ²Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. ³Departments of Pathology and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. ⁴The Broad Institute at MIT and Harvard, Cambridge, MA 02142, USA. ⁵Genetics Branch, National Cancer Institute, National Naval Medical Center, Bethesda, MD 20889, USA. ⁶Department of Pathology, Brigham and Women's Hospital, Boston MA 02115, USA. ⁷Department of Surgery 2, Nagoya City University Medical School, Nagoya 467-8601, Japan.

Iressa time-line

FDA ALERT [6/2005]

FDA has approved new labeling for Iressa that states the medicine should be used only in cancer patients who have already taken the medicine and whose doctor believes it is helping them. New patients should not be given Iressa because in a large study Iressa did not make people live longer. There are other medicines for non-small cell lung cancer (NSCLC) that have shown an ability to make people live longer.


GEFITINIB (IRESSA™) MARKETING AUTHORISATION APPLICATION WITHDRAWN IN EU

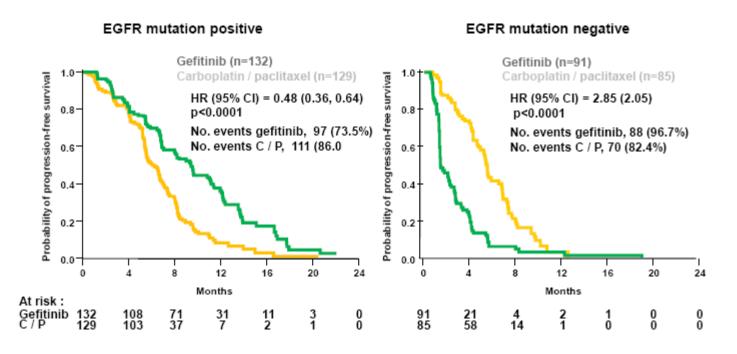
06/01/05

AstraZeneca today announced that it is withdrawing the European Marketing Authorisation Application (MAA) for IRESSA™ (gefitinib) in treating patients with non-small cell lung cancer (NSCLC) from the European Medicines Agency (EMEA

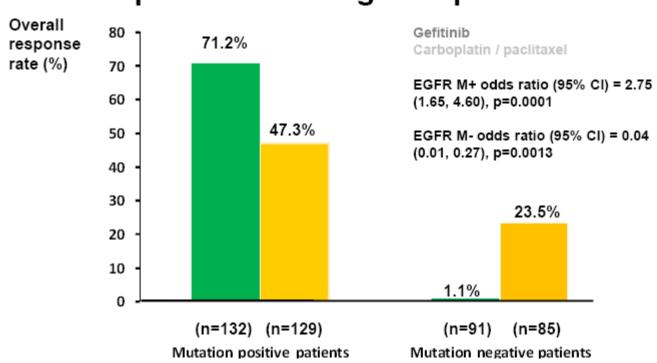
Iressa time-line

IPASS – good science is good business

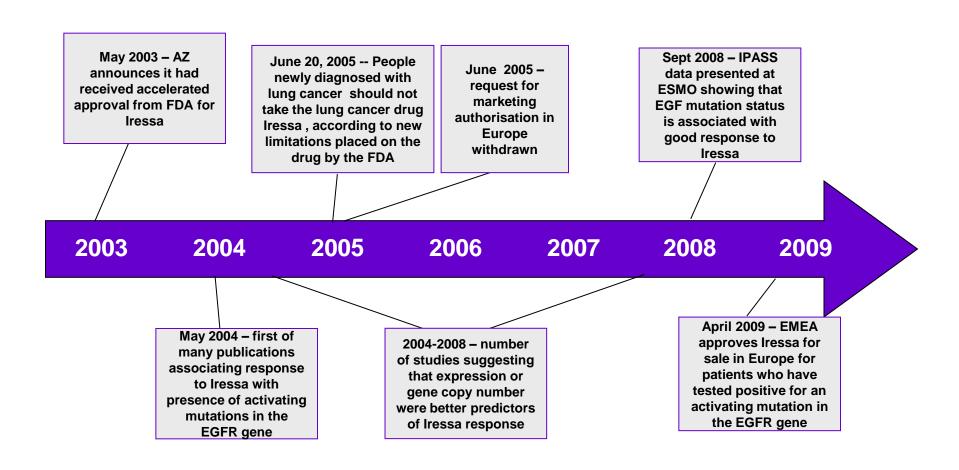
IPASS Press Conference

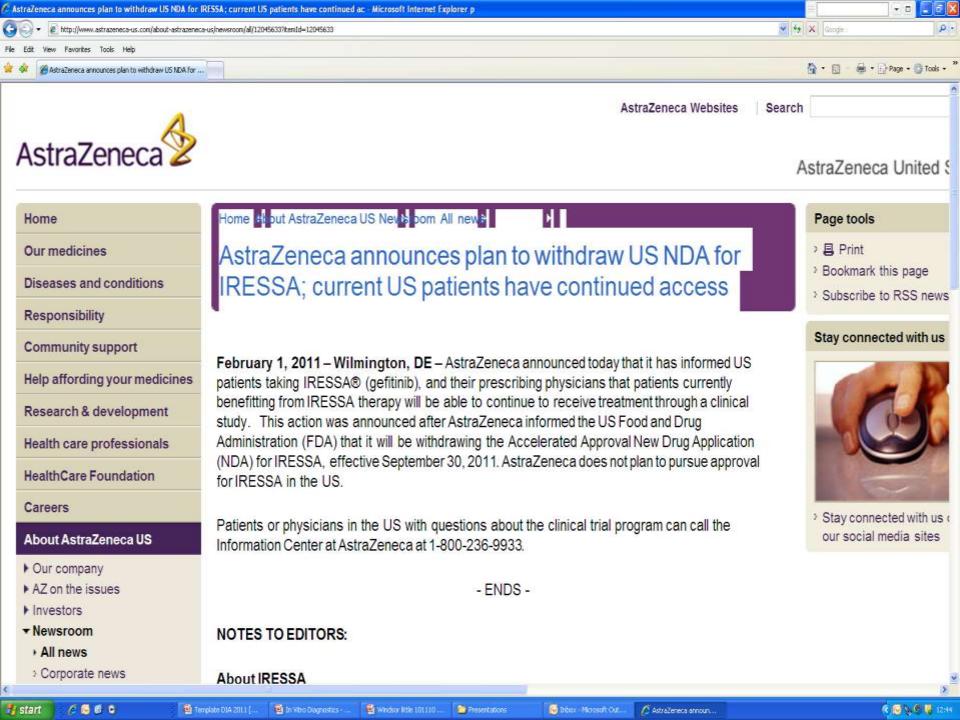

Professor Tony Mok, Chinese University of Hong Kong

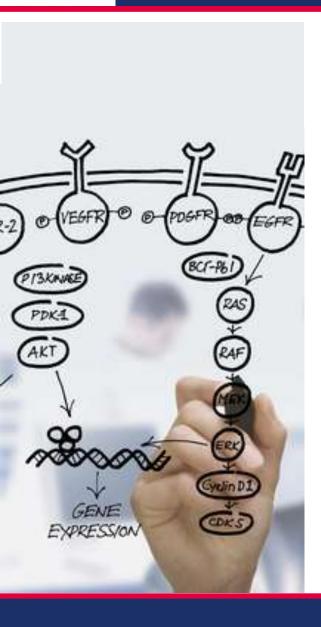
Phase III, randomised, open-label, first-line study of gefitinib vs carboplatin / paclitaxel in clinically selected patients with advanced non-small cell lung cancer (IPASS)



Progression-free survival in EGFR mutation positive and negative patients




Objective response rate in EGFR mutation positive and negative patients


Iressa time-line

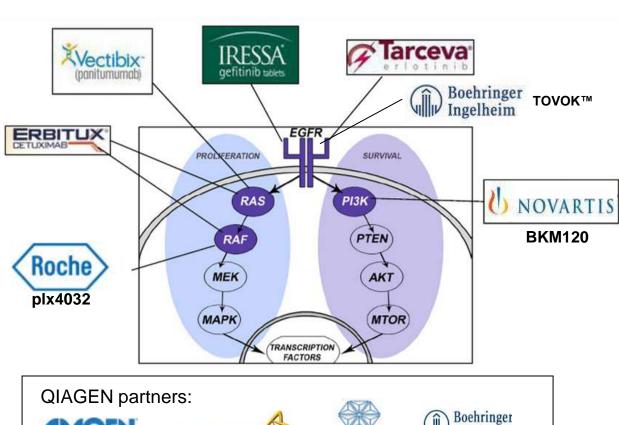
What have we learnt from Iressa and EGFR

- Personalised healthcare becomes a reality when the pharmaceutical and diagnostic industries align
- Following on from pioneering initiatives like IPASS the Rx/Dx business model is now well established and there are many more examples in development
- The more pragmatic view of the European regulators compared to their American cousins appears to encourage innovation
- Data is essential don't make assumptions about clinical utility

Why has it taken so long

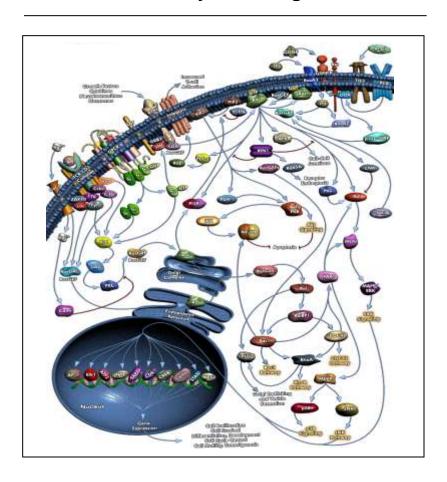
Pharmaceutical Industry

- Concerns about market size
- Complexity
- Conservatism


Diagnostics Industry

- Cost
- Reward
- Access to Clinical Samples

Therapies Addressing the EGFR pathway

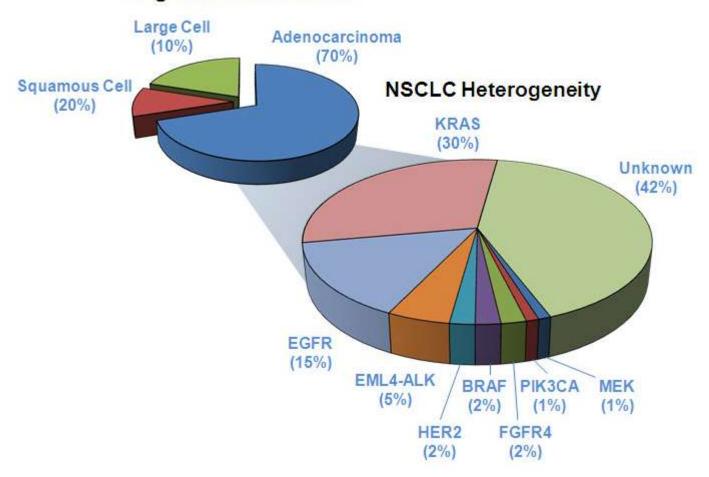


Source: QIAGEN EGFR = Epidermal Growth Factor Receptor

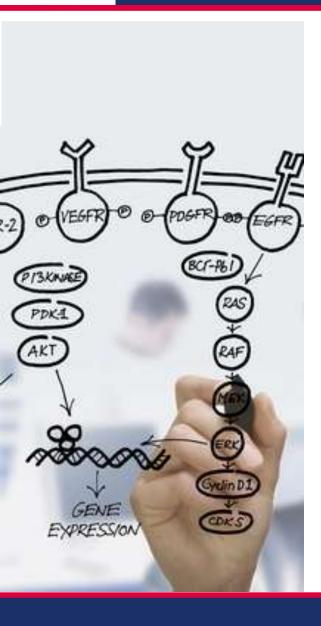
Tumor Profiling in the Future

Pathway Knowledge

Tumor Panel - Example DNA Analysis


ABL	FGFR3	MAP2K2	PTEN	NRAS
BRAFT	FGFR4	MAP2K4	RETT	HRAS
FGFR1	FLT3	MET	SRC	AR
FGFR2	MAP2K1	PIK3CA	MCL1	ERBB3
AKT1	AKT2	AKT3	ERCC1	ERBB4
ESR1	EGFR	KRAS	RARAT	KIT
CEBPA	JAK2	NMP1	PDGFR	BRCA
MSH6	MYC	TP53	MCL1	MGMT1T
			armacokin	
CYP2D6	UGT1A1	ТМРТ	DPYD	CYP3A5
CYP2D6 CYP1B1	UGT1A1 ESR2	TMPT MTHFR	DPYD S0D2	CYP3A5 ERCC2
CYP2D6 CYP1B1 CYP2C19	UGT1A1 ESR2 FGGR3A	TMPT MTHFR NQ01	DPYD S0D2 SULT1A1	CYP3A5 ERCC2 MAN1B1
Markers CYP2D6 CYP1B1 CYP2C19 CYP2C8 CYP3A4	UGT1A1 ESR2	TMPT MTHFR	DPYD S0D2	CYP3A5 ERCC2

Additional Marker sets for Viral diseases, Gene Expression or miRNA required

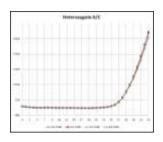

Genetic Variation in Lung Cancer

Lung Adenocarcinomas

The technical, clinical and regulatory challenges of increasing complexity

- Technical
 - How do we measure it
- Clinical
 - What does it mean
 - Evidence > Implication
- Regulatory
 - "The claim you prove is the claim you get"

Understanding how these issues will play out will be essential for platform companies as they develop new instruments for molecular diagnostics



Technical Requirements of Companion Diagnostic Systems

- 1. Measures an appropriate number of genetic variants
 - 1. BRAF -1
 - 2. KRAS 7
 - 3. EGFR -29
 - 4. Lung 50-100

- 2. Can deal with the challenge of sample variability
 - 1. Blood
 - 2. FFPE Biopsy
 - 3. Cytology

- 3. Is easy to use and reliable
 - 1. Throughputs
 - 2. Automation

Clinical Utility and Regulatory Approval

- EGFR contains 29 mutations
- What level of clinical validation is appropriate?
 - Demonstration that the panel predicts response to Iressa
 - clinical population to screen to find 5 EG+pts is about 50
 - Demonstration that each individual mutation within the panel predicts response to Iressa
 - Clinical population to screen to find at least 5 of each of the 29 mutations in the panel is about 3000
- As the complexity of mutation and biomarker profiles increases this problem becomes more of a challenge – in the worst case it could impede the development of the very valuable field of personalised health care

PHC Summary

- The personalised healthcare market is real, expanding and sustainable
- The opportunity is substantial but it requires a thorough understanding of the market and the customers to make a successful business
- Success requires consideration of
 - Content
 - Platform
 - Distribution

Thank you!

Why has it taken so long

Pharmaceutical Industry

- Concerns about market size
- Complexity
- Conservatism

Diagnostics Industry

- Cost
- Reward
- Access to Clinical Samples